^甲请提供第一作者的手机号码以方便编辑部和作者联系,此号码不会公布在期刊中;请认真核实参考文献的作者,期
 20刊,年,卷,期,起止页码是否正确以及文献是否与文中一一对应;文章中的图和表被编辑加工过,请仔细核对图
 表的文题,数据等;核对图6中的价态;无论从邮局还是从银行汇款《分析化学》版面费,请务必写明单位全
 称、地址、单位联系电话、开户行、帐号、税号、稿号,以便发票能顺利开出

微波等离子体炬质谱仪的研制 [并华磊手机: 13141369446

电子邮箱:179454936@qq.com

许华磊¹ 凌星² 张小华² 蒋涛³ 朱志强³ 邱春玲¹ 田地^{*1} ¹(吉林大学仪器科学与电气工程学院,长春130026) ²(北京普析通用仪器有限责任公司,北京100085) ³(东华理工大学 江西省质谱科学与仪器重点实验室,南昌 330013)

摘 要 基于微波等离子体炬离子源研制了一台四极杆质谱仪(MPT-QMS),并将其用于水样痕量金属元素的检测分析。系统地研究和阐述了离子漏斗对仪器性能和分析结果的影响。实验发现,可以通过调节离子漏斗的射频电压产生较强的碰撞诱导解离效应,能有效破碎 MPT 离子源产生的金属离子团簇等多原子离子,提高较为简单的特征离子产率,并大幅简化了质谱图。与不含有离子漏斗的线性离子阱质谱仪(LTQ)进行比较,MPT-QMS的检测结果更加易于识别。使用此仪器对含有 20 种金属元素的混合样品进行检测,大多数元素检出限达到 0.02 ~1.4 μg/L 量级。与 ICP 质谱仪相比,MPT-QMS 的功耗和载气消耗量仅为 10% 左右,适合作为车载仪器进行水质的现场检测。

关键词 微波等离子体炬;四极杆质谱仪;金属检测;离子漏斗;碰撞诱导解离

1 引 言

新型离子源的发展一直是质谱科学的重要研究领域,尤其是可在大气压下工作的常压离子源,如电 喷雾离子源(Electrospray ionization)及一系列相关的技术^[1-8]。这些新型离子源多用于有机物和生物大 分子的检测,针对无机金属元素检测的新型离子源并不多见。在金属检测领域,电感耦合等离子体(Inductively coupled plasma)离子源处于垄断地位,具有电离能力强、灵敏度高(检出限可达 0.1 ng/L)、定 量分析的优势。但由于 ICP 工作需要消耗大量的电能(功耗达到 2 kW)和工作气体(约 15 L/min 高纯 氩气),以及大功率循环冷却水(不低于 2 kW)和通风系统支持,不利于搭载在车辆上进行现场检测,因 而需要发展一种功率低、耗气省的新型离子源能够用于金属元素,特别是重金属的现场检测,以满足环 境保护,突发事件处理等相关应用的需求。

微波等离子体炬(Microwave plasma torch)是金钦汉等于 1985 年提出并研制的一种新型等离子体 发生装置^[9],目前已用作原子发射光谱的光源,用于全元素分析特别是金属元素分析^[10]。它采用类似 于 ICP 炬管的三管结构,可中心通道进样,使用微波放电系统提供能量,具有功率低、耗气省的特点^[11]。 段忆翔等曾将小功率 MPT 与四极杆质谱仪(Quadrupole Mass Spectrometer)联用,集中用于非金属元素的检 测^[12]。他们采用的四极杆质谱仪结构与常规 ICP-MS 相似,使用采样锥和截取锥作为离子取样装置^[13]。

针对水样中金属元素的检测,本研究基于 MPT 离子源研制了一种新型的 MPT-QMS 质谱仪,此仪器 采用加热毛细管作为离子取样装置,并在离子光学系统中应用了离子漏斗。因 MPT 离子源功率较小, 产生的金属离子多以结合水、酸根等团簇形式出现,引入加热毛细管和离子漏斗有助于对这些多原子离 子进行二次解离,提高金属元素单原子离子的产率,弥补离子源功率的不足。使用 BaCl₂样品对该仪器 和线性离子阱质谱仪(LTQ)的检测结果进行比较,系统研究了离子漏斗的工作条件对仪器性能和实验 结果的影响。利用 MPT-QMS 对含有 20 种元素的混合样品进行检测,并给出检测数据。

2 实验部分

2.1 仪器结构

研制的微波等离子体炬质谱仪主要由微波等离子源、接口、离子光学系统、四极杆质量分析器、真空

系统和数据控制采集系统等部分组成。质谱仪结构如图 1 所示,采用内径为 0.5 mm (外径 1.6 mm)的 不锈钢毛细管对 MPT 离子源进行取样,通过对毛细管进行加热提高去溶剂效果。偏转电极正对加热毛 细管的位置有一条狭缝,中性粒子和光子不受偏转电场的影响穿过该狭缝,避免了对检测器的干扰。样 品离子在偏转电极的作用下改变运动方向进入右侧的离子漏斗。离子漏斗由 11 片孔径从 11 mm 逐渐 减少到 5 mm 的透镜片组成。位于离子漏斗下游的是两组八极杆组成的传输透镜组,其所处腔室的真 空度分别在 1 Pa 和 10⁻² Pa。八极杆后是由 3 片膜孔透镜构成的 Einzel 透镜,起到聚焦和准直离子束的 作用。四极杆所处腔室的真空度约 10⁻⁴ Pa,电子倍增器安装在四极杆后,用于接受并放大离子信号。 所有电极所附加的直流和射频电压均由自主开发的测控电路和上位机软件进行实时控制。微波等离子 源(最大功率为 200 W)由吉大小天鹅公司提供,机械泵为 Edwards E2M28,分子泵采用 Pfeiffer Split-Flow310,电子倍增器选用 DeTech 397 型。

2.2 离子源

微波等离子源包括微波功率 源、雾化去溶装置和微波等离子 炬三部分^[14,15]。样品溶液由蠕动 泵泵入雾化去溶装置进行雾化去 溶,产生的干燥气溶胶由炬管的 中心通道进入炬焰,在微波功率 源的作用下电离,产生可供质谱 仪分析的离子。微波等离子体炬 结构图^[16]及质谱仪接口如图 2 所示。火焰对于气溶胶中的水分 比较敏感,气溶胶中水分去除不 充分时微波等离子炬不易点火或 突然猝灭^[17,18]。

图 1 MPT-QMS 结构示意图

Fig. 1 Schematic diagram of microwave plasma torch-puadrupol mass spectrometer (MPT-QMS)

图 2 微波等离子体炬结构^[16]及质谱仪接口

Fig. 2 Schematic diagram of MPT^[16] and mass spectrometer interface

1. 外管 Outer tube; 2. 耦合天线 Coupling plate; 3. 中管 Intermediate tube; 4. 内管 Inner tube 5. 工作气 Plasma gas 6. 载气 Carrier gas。

微波等离子源的工作条件如下:微波前向功率100 W,工作频率2.54 GHz,工作气流量650 mL/min,载气流量1400 mL/min,采样深度10 mm,加热管温度150℃,H₂SO₄纯度98%,氩气纯度为99.99%。

2.3 离子漏斗装置

离子漏斗是 MPT-QMS 离子光学系统中的核心器件,起到了将离子从 100 Pa 真空区传输到 1 Pa 真空区的重要作用。离子漏斗由 11 个中心孔径由 11 mm 逐渐减小至 5 mm 的环状金属片组成,离子漏斗每片厚度为 0.9 mm,间距为 2.1 mm。各金属片上施加由 60 V 逐级降低至 30 V 的直流电压。相邻金属片上施加幅值相同相位相反的射频电压(射频频率为 900kHz),可以在径向形成一种赝势场(Pseudopotential)^[19,20],将发散的离子束缚在离子漏斗中。

在 100 Pa 气压条件下,离子的平均自由程约为 1 µm^[21],离子在飞行过程中与漏斗中的背景气体

发生大量碰撞^[22,23]。碰撞能量足够高时,MPT 源产生的多原子离子在与背景气体碰撞过程中被解离成 单原子离子,有效补偿了微波等离子体炬解离能力差的缺点,对于金属元素的检测具有重要意义。

3 结果与讨论

3.1 离子漏斗对实验结果的影响

实验发现不同离子漏斗射频电压对质谱图有一定影响。图 3 是 BaCl₂样品在四极杆质谱仪(QMS) 得到的结果。当离子漏斗射频电压为 70 V 时,质谱图中出现[Ba(NO₃) H₂O]⁺,[Ba(NO₃)]⁺, [BaO₂]⁺,[Ba(OH)]⁺等多种 Ba 元素的多原子离子的信号,而 Ba⁺离子信号相对较弱。当离子漏斗射 频电压为 150 V 时,除 Ba⁺和[Ba(OH)]⁺外,在其它位置未观察到任何明显与 Ba 有关的质谱峰,同时 Ba⁺信号得到了大幅提高。

图 3 中产生不同质谱图可能是由于不同离子漏斗射频电压对其内部碰撞诱导解离效应程度不同所

导致。当射频电压较低时,碰撞解离程度较低,在质 谱图中会存在多种多原子离子,如 [Ba(NO₃) H₂ O]⁺, [Ba(NO₃)]⁺, [BaO₂]⁺, [Ba(OH)]⁺等。这 些离子均由 MPT 离子源产生,因解离不充分而出现 在质谱图中,当与其它元素的质谱峰发生重叠时,将 对检测造成极大的干扰。当射频电压逐渐升高时, 这种情况得到明显改善,图 4 是改变离子漏斗射频 电压对各种离子信号强度影响。从图 4 可见,随着 射频电压的提高,碰撞解离程度逐渐增强,[Ba (NO₃) H₂O]⁺和[Ba(NO₃)]⁺的信号强度迅速降低, [BaO₂]⁺和[Ba(OH)]⁺的信号强度上升到各自的峰 值后也开始下降,而 Ba⁺的强度始终得到提高,仅在 射频电压达到测试峰值时,出现小幅下降。实验表 明,在一定范围内提高射频电压能够增强离子漏斗 内的碰撞效果,使得大质量数的多原子离子迅速解

图 4 离子漏斗射频电压对信号强度的影响 Fig. 4 Effect of the RF voltage of the ion funnel on the signal intensity

[Ba(NO₂)]* · H₂O; 2. [Ba(NO₃)]*; 3. [Ba(O₂)]*;
 [Ba(OH)]*; 5. Ba*; 6. 总离子(Sum of all ions)。

离成低质量数离子,甚至单原子离子,将图 3A 大幅简化至图 3B 所示效果,并且提高了 Ba*信号的强度。 实验测试了多种不同金属元素对应的最优离子漏斗射频电压 Vrf,并获取了它们各自信号相对于 Vrf 为 60 V 时的增强幅度,结果见表 1。表 1 中每种元素信号增强幅度不同,可能与其母离子内部化学 键能的大小有关。不同金属元素在溶液中的价态影响其产生可以检测的多原子离子具有较明显的规律 性,一价金属元素通常直接得到唯一的单原子离子峰或与 H₂O 结合的多原子离子峰,二价金属元素的 结合物为 OH⁻,三价的金属元素会得到金属氧化物离子,不同化学键的解离键能如表 2 所示^[23]。其中 Cs⁺与 H₂O 的解离键能最低,当离子漏斗射频电压 Vrf 为 20 V时,[Cs(H₂O)]⁺的质谱峰就已经完全消 失,但由于此时离子漏斗传输效率并不高,所以,当 Vrf 为 60 V时 Cs⁺离子信号强度才达到最强。除 Bi 元素外,三价金属元素与 O²⁻结合形成的离子键均有较大解离键能,因此在质谱图中只观测到单一的金 属氧化物离子质谱峰。Ba 和 Pb 都是二价金属,它们与一价阴离子结合形成的多原子离子键能居中,因 此理论上通过提高离子漏斗射频电压的幅值增加碰撞效应的强度能够使母离子逐渐解离,增强金属元 素的信号强度。实验中观测到 Ba 和 Pb 的信号强度增幅最大,证实了上述理论。

即使某些元素的多原子离子不能完全解离,这些多原子离子相比未碰撞之前已经足够简单。同种 金属元素出现的多原子离子类型相对固定,与金属离子结合的阴离子并无直接关系,例如 BaCl₂和 Ba (NO₃)₂最后都会得到 Ba⁺和[Ba(OH)]⁺,这个特性是金属元素的检测关键因素。

表1 检测金属元素的实验数据

Table 1 Detection data of metallic elements

金属元素 Metallic elements	射频电压范围 RF voltage range(V)	特征离子峰 Characteristic ion peaks	信号强度增幅(相比 Vrf=60V) Increase of signal strength (Compared with Vrf=60 V)
Cs	60 ~ 150	Cs ⁺	1
Ba	130 ~ 150	Ba ⁺ [Ba(OH)] ⁺	38.6
Pb	130 ~ 150	Pb ⁺ [Pb(OH)] ⁺	55.9
Y	100 ~ 130	[YO] ⁺	7.1
La	100 ~ 130	[LaO] *	14.4
Ce	120 ~ 150	[CeO] *	9.7
Pr	120 ~ 150	[PrO] +	17.5
Cd	80 ~ 150	Cd^+	1.3
In	80 ~ 150	In^+	2.0
Sn	120 ~ 150	Sn^+	22.7
\mathbf{Sb}	80 ~ 100	[SbO] *	3.1
Bi	120 ~ 150	Bi^+	4.1

表 2 多原子离子中的解离键能

Table 2 Bond dissociation	energies in	polyatomic	cations
---------------------------	-------------	------------	---------

化学键 Chemical bond	金属元素价态 Valence state of metallic elements	解离键能 Bond dissociation energies(eV)
Cs^+-H_2O	+1	57.3
In^+NH_3	+1	111
Pb ⁺ —Cl	+2	285
Ba ⁺ —OH	+2	530.7
$Y^{+}-0$	+3	718
$La^+ - O$	+3	875
$Ce^+ - O$	+3	852
$Pr^{+}-O$	+3	796
Bi ⁺ —O	+3	174

3.2 MPT-QMS 与 MPT-LTQ 实验结果对比

为了进一步确认离子漏斗的作用,将 MPT 与线 性离子阱质谱仪(LTQ)联用,图 5A 是 MPT-LTQ 对 BaCl₂溶液进行检测得到的结果。在 MPT-LTQ 的一 级质谱图中有两组峰形一致的谱带,主要特征峰为 *m/z* 236 和 253,每个谱带中质谱峰强度比例与 Ba 元 素的天然同位素分布基本符合,根据串级质谱的结 果(图 5B),它们可能分别归属于 Ba(NO₃)⁺·2H₂O

图 5 (A) MPT-LTQ 对 BaCl₂样品的检测质谱图,插图 是 Ba 的天然同位素分布图; (B) 串级质谱结果 Fig. 5 (A) Mass spectra of BaCl₂ obtained with MPT-linear ion trap mass spectrometer (LTQ), illustration is the natural isotopic distribution of Ba; (B) Result of tandem mass spectrometry

和 Ba(NO₃)⁺ · 2H₂O · NH₃离子。此结果与图 3A 的结果类似,金属元素以多原子离子的形式存在,需 要通过多步串级质谱手段才能确认信号归属。

3.3 MPT-QMS 检测多元素混合样品

选取含有20种不同元素的混合溶液模拟酸解后的实际样品测试 MPT-QMS 同时检测多种元素的能力,结果见表3。本次实验中,离子漏斗射频电压幅值为120V。检测结果如图6所示,其中稀土元素 La的特征峰[LaO]⁺与[Ba(OH)]⁺在 m/z 155 处发生重叠,可以根据 Ba 元素的天然同位素分布按比例扣除重叠部分中[Ba(OH)]⁺的含量,分辨出[LaO]⁺。这种方法得到的[LaO]⁺精度难以保证,因此根本的解决办法是尽可能提高离子漏斗的碰撞效应,使[Ba(OH)]⁺得到完全解离。除此以外,每种元素的单原子离子峰清晰可辨,混合样品的质谱图为单个元素质谱图的简单叠加,在整个质量扫描范围未出现杂质峰或包含多个金属元素的团簇离子峰。

以对样品进行连续3次采样的平均值作为该时间点的有效数据,定义在20 min 内每2 min 进行一次检测,由此获得10个有效数据的相对标准偏差为系统精密度(RSD);测定1% HNO₃溶液10次,将样品离子 *m/z* 所在位置的结果的标准偏差作为系统噪声(SD);定义与3倍系统噪声(3σ)相当的浓度为系统检出限(LOD),MPT-QMS 检测多种元素的检出限达到0.02~1.4 μg/L。数据列于表3。

图 6 混合标准样品的 MPT-QMS 质谱图

Fig. 6 Mass spectrum of mixed standard sample obtained with MPT-QMS

表3	系统性能测试数据

Data of system performance test

Table 3

元素 Elements	样品浓度 Samples concentration (µg/L)	RSD(%)	信号强度 Signal intensity	系统噪声 Noise of system	检出限 Limit of detection (µg/L)
Cu	10	1.4	3039	70	0.69
Ga	10	3.0	1488	67	1.4
Sr	10	2.9	19505	75	0.11
As	10	2.0	2738	76	0.83
Rh	500	2.4	3419	65	30
Y	10	2.6	2502	68	0.84
Cd	10	2.5	6094	63	0.31
In	10	1.4	10255	56	0.16
Sn	10	2.6	2446	72	0.88
\mathbf{Sb}	10	1.6	1957	73	1.1
Cs	10	3.3	45249	67	0.04
Ba	10	1.4	62851	64	0.03
La	10	_	-	-	-
Ce	10	1.5	14991	71	0.14
Pr	10	2.7	15356	82	0.16
Au	500	2.1	7181	73	15.15
Tl	10	2.1	56646	66	0.03
Pb	10	1.6	43191	64	0.02
Bi	10	1.2	104061	78	0.02

3.4 Ba 元素的定量分析

在优化条件下,以BaCl₂溶液为样品,对MPT-QMS的定量分析能力进行评估。以1%HNO₃溶液为 基体,配制系列梯度浓度的标准溶液,每种浓度溶液

测定 6 次。分别以 Ba²⁺浓度和信号强度为横坐标和 纵坐标, 拟合绘制出 Ba²⁺的工作曲线(图 7), 线性范 围为 0.1 ~ 50 μ g/L, 线性方程为 y = 5777.9 + 3918.6x, 相关系数 R² = 0.9596。

4 结论

应为10的5次方

研制了一种新型等离子体质谱仪 MPT-QMS,用 于水样痕量金属元素的检测分析。在此仪器中加入 了离子漏斗装置,可有效获得金属离子的 MPT 特征 质谱信号,并详细研究了离子漏斗的碰撞诱导解离 效应对金属元素检测结果的影响。在合适的离子漏

斗射频电压下,可以直接在一级质谱图中得到单原子离子的质谱信号,无需再进行多级质谱分析。使用 MPT-QMS 对 20 种元素混标溶液的检测结果表明,此仪器得到的质谱峰相对简单,容易分辨,绝大多数 金属元素检出限低于1.4 μg/L,部分达到0.02 μg/L 量级。相对于 ICP-MS,MPT 离子源具有功率小,耗 气量省的特点,适于作为车载仪器进行现场分析。

References

- 1 Chen H W, Hu B, Hu Y, Huan Y F, Zhou Z Q, Qiao X F. J. Am. Soc. Mass Spectrom. , 2009, 20(4): 719-722
- 2 Harper J D, Charipar N A, Mulligan C C, Zhang X, Cooks R G, Ouyang Z. Anal. Chem., 2008, 80(23): 9097-9104
- 3 Zhu L, Gamez G, Chen H W, Chingin K, Zenobi R. Chem. Commun. , 2009, (5): 559-561
- 4 Yang S P, Chen H W, Yang Y L, Hu B, Zhang X, Zhou Y F, Zang L L, Gu H W. Chinese J. Anal. Chem., 2009, 37 (3): 315–318
- 5 Chingin K, Gamez G, Chen H W, Zhu L, Zenobi R. Rapid Commun. Mass Spectrom. , 2008, 22(13): 2009-2014
- 6 Yang S P, Ding J H, Zheng J, Hu B, Li J Q, Chen H W, Zhou Z Q, Qiao X L. Anal. Chem. , 2009, 81(7): 2426-2436
- 7 Chen H W, Lai J H, Zhou Y F, Huan Y F, Li J Q, Zhang X, Wang Z C, Luo M B. Chinese J. Anal. Chem., 2007, 35 (8): 1233-1240
- 8 Takats Z, Wiseman J M, Gologan B, Cooks R G. Science, 2004, 306(5695): 471-473
- 9 JIN Qin-Han, YANG Guang-De, YU Ai-Min, LIU Jun, ZHANG Han-Qi, BEN Yue-Zhi. Acta Scientiarum Naturalium Universitatis Jilinensis, 1985, (1): 90-91

金钦汉,杨广德,于爱民,刘军,张寒琦,贲跃芝.吉林大学自然科学学报,1985,(1):90-91

- ZHANG Jin-Sheng, DONG Yuan, LI Li-Hua. Food and Fermentation Industries, 2005, 31(9): 85-87
 张金生, 董媛, 李丽华. 食品与发酵工业, 2005, 31(9): 85-87
- JIN Qin-Han, WANG Fen-Di. Chem. J. Chinese Universitiesy, 1990, 11(12): 1353-1356 金钦汉, 王芬蒂. 高等学校化学学报, 1990, 11(12): 1353-1356
- 12 Duan Y X, Wu M, Jin Q H, Hieftje G M. Spectrochimica Acta Part B-Atomic Spectroscopy, 1995, 50(9): 1095-1108
- 13 Li G Q, Duan Y X, Hieftje G M. Journal of Mass Spectrometry, 1995, 30(6): 841-848
- 14 YE Dong-Mei, DONG De-Fan. Journal of Analytical Science, 1993, 9(3): 12-17 叶冬梅, 董德凡. 分析科学学报, 1993, 9(3): 12-17

15	ZHAO Li-Wei, FU Yao, SONG Da-Qian, ZHANG Han-Qi, JIN Qin-Han. Chem. J. Chinese Universities, 2001, 22(2):
	201-205
	赵丽巍, 付 瑶, 宋大千, 张寒琦, 金钦汉. 高等学校化学学报, 2001, 22(2): 201-205
16	Yang W.J., Zhang H.O., Yu A.M., Jin O.H., Microchemical Journal, 2000, 66(1-3), 147-170

- DUAN Yi-Xiang, DU Xiao-Guang, LIU Jun, JIN Qin-Han, LIU Ming-Zhong, SHI Wen. Chinese J. Anal. Chem., 1993, 21(5): 610-614
 段忆翔,杜晓光,刘军,金钦汉,刘明钟,施文. 分析化学, 1993, 21(5): 610-614
- 18 ZHOU Jian-Guang, PENG Zeng-Hui, HUAN Yan-Fu, YU Ai-Min, JIN Qin-Han, ZHOU Xiang. LIU Mei. Chem. J. Chinese Universities, 2002, 23(7): 1273-1276
- 周建光,彭增辉,郇延富,于爱民,金钦汉,周翔,刘梅.高等学校化学学报,2002,23(7):1273-1276
- 19 Taeman K, Aleksey V T, Richard H, David C P, Gordon A, Harold R U, Richard D S. Anal. Chem., 2000, 72(10):

 2247-2255
- 20 Tridas E, Anthony J M, Guldiken R, Schlaf R. J. Mass Spectrom. , 2015, 50(1): 206-211
- 21 Kelly R T, Tolmachev A V, Page J S, Tang K Q, Smith R D. Mass Spectrom. Rev., 2010, 29(2): 294-312
- 22 Carl D R, Moision R M, Armentrout P B. J. Mass Spectrome. , 2009, 20(12): 2312-2317
- 22 Romanov V, Verkerk U H, Siu C K, Hopkinson A C, Siu K W. Anal. Chem. , 2009, 81(16): 6805-6812
- 23 Luo Y R. Comprehensive Handbook of Chemical Bond Energies, CRC Press, 2007

Development of Microwave Plasma Torch Mass Quadrupole Spectrometer

XU Hua-Lei¹, LING Xing², ZHANG Xiao-Hua², JIANG Tao³, ZHU Zhi-Qiang³, QIU Chun-Ling¹, TIAN Di^{*1}

¹(College of Instrument Science & Electrical Engineering, Jilin University, Changchun 130000, China)

²(Beijing Perkinje General Instrument Co. Ltd., Beijing 100085, China)

³ (Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation,

East China Institute of Technology, Nanchang 330013, China)

Abstract A novel quadrupole mass spectrometer using microwave plasma torch as the ionization source was developed (MPT-QMS) for the analysis of trace metal elements in water samples. The influence of ion funnel on instrument performance and analytical outputs was studied and illustrated. The results showed that it could lead to effective collision induced dissociation (CID) by modulating the RF voltage of the ion funnel, which quantitatively broke polyatomic ions produced by MPT into mono-atomic ions. Such effect significantly reduced the complexity of the mass spectrum caused by multi-atom ions. In contrast to a linear ion trap mass spectrometer (LTQ) without ion funnel, the result of MPT-QMS was easier to be identified. A mixed sample containing 20 metal elements was detected by this instrument, the detection limits of most elements were between 0. 02 and 1. 4 ng/mL. Compared to ICP-MS, MPT-QMS was only 10% of power and gas consumption, and was suitable for the analysis of water samples when carried by a vehicle.

Keywords Microwave plasma torch; Quadrupole mass spectrometer; Metal detection; Ion funnel; Collision induced dissociation

(Received 25 June 2015; accepted 24 August 2015)

This work was supported by the National Major Scientific Instruments and Equipments Special Project (Nos. 2011YQ1401500402, 2011YQ14015009)

经本人核对,参考文献中的作者、期刊、年、卷、起止页码等信息均正确无误;图表中有问题的部分已经标注。 感谢编辑部所有同志对本文所付出的辛勤劳动,衷心祝愿《分析化学》杂志越办越好!

许华磊联系方式:手机13141369446 电子邮箱 179454936@qq.com