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ABSTRACT: Traditionally, molecular information on metabolites,
lipids, and proteins is collected from separate individual tissue
samples using different analytical approaches. Herein a novel
strategy to minimize the potential material losses and the mismatch
between metabolomics, lipidomics, and proteomics data has been
demonstrated based on internal extractive electrospray ionization
mass spectrometry (iEESI-MS). Sequential detection of lipids,
metabolites, and proteins from the same tissue sample was achieved
without sample reloading and hardware alteration to MS instrument by sequentially using extraction solutions with different
chemical compositions. With respect to the individual compound class analysis, the sensitivity, specificity, and accuracy obtained
with the integrative information on metabolites, lipids, and proteins from 57 samples of 13 patients for lung cancer prediction
was substantially improved from 54.0%, 51.0%, and 76.0% to 100.0%, respectively. The established method is featured by low
sample consumption (ca. 2.0 mg) and easy operation, which is important to minimize systematic errors in precision molecular
diagnosis and systems biology studies.

Biological tissue, which is intermediate between a single cell
and a whole organism, is widely used in systems biology

studies and molecular diagnosis.1,2 Systematic bias, particularly
among the results of metabolomics, lipidomics, and proteomics
analyses, may occur in conventional omics approaches because
different loci of tissue samples are analyzed.2,3 Futher bias
between the metabolomics, lipidomics, and proteomics data
may be associated with the employment of different tissue
samples and different analytical instruments. Logically,
maintaining the instrumental conditions constant and record-
ing different omics data using exactly the same piece of tissue
sample should improve the accuracy and consistency of the
analytical results. Therefore, it is of interest to implement and
test an analytical strategy that could provide maximal
molecular information from a single sample with the identical
instrumental setup for systems biology studies.
Traditionally, the omics data on small metabolites, lipids,

and proteins are separately collected using differential
individual tissue samples by multiple analytical techniques,
with cumbersome sample preparation steps including extrac-
tion, separation, and centrifugation, and a large amount of
tissue samples required.2,4,5 Statistics and bioinformatics tools
are usually used to link the specific omics data to other systems
biology information.6 Yet, integrating multilayers of molecular
information from different samples may smear the molecular
profile of the individual samples, resulting in misleading

conclusions owing to systematic errors caused by the
nonhomologous samples. Direct profiling of small metabolites,
lipids, and proteins from exactly the same sample minimizes
the chance of material/information loss and system errors in
systems biology studies, which may enable better mechanistic
understanding of pathophysiological conditions, and thus
leading to novel strategies for the early detection, prevention,
and treatment of diseases with the improved accuracy of
molecular diagnosis.7,8

Herein a novel strategy to minimize the potential material
losses and the mismatch between metabolomics, lipidomics,
and proteomics data has been demonstrated based on internal
extractive electrospray ionization mass spectrometry (iEESI-
MS). Sequential detection of lipids, metabolites, and proteins
from exactly the same bulk tissue sample without sample
reloading and hardware alteration to the MS instrument was
achieved by sequentially applying extraction solutions with
different chemical compositions. With respect to the individual
compound class analysis, the sensitivity, specificity, and
accuracy obtained with the integrative information on
metabolites, lipids, and proteins from 57 samples of 13
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patients for lung cancer prediction was substantially improved
from 54.0%, 51.0%, and 76.0% to 100.0%, respectively. The
established method is featured by low sample consumption
(ca. 2.0 mg) and easy operation, which is important to
minimize systematic errors in precision molecular diagnosis
and systems biology studies.

■ EXPERIMENTAL SECTION

Materials and Reagents. The porcine lung samples were
purchased from local meat stores. A total of 57 tissue samples
(including 29 cancerous tissue samples and 28 normal tissue
samples) from 13 patients were provided by the Second
Affiliated Hospital of Nanchang University, with all the
patients’ informed consent. All the experiments were approved
by the Medical Ethics Committee of the Hospital Institutional
Review Board of the Second Affiliated Hospital of Nanchang
University, and all clinical investigations were conducted
according to the principles expressed in the Declaration of
Helsinki.9 All tissue samples were stored around −80 °C in a
refrigerator. The fused capillary (i.d., 0.10 mm, o.d., 0.15 mm)
was obtained from Agilent Technologies Co., Ltd. Methanol
and acetic acid were HLPC grade and bought from ROE
Scientific Inc. (Newark, U.S.A). The deionized water was
provided by Milli-Q water purification system (Billerica, USA).
Instruments and Method. The iEESI-MS experi-

ments10−12 were carried out using a homemade iEESI ion
source coupled with a linear trap quadruple (LTQ) mass
spectrometer controlled by XCalibur 2.0 software (Thermo
Scientific, San Jose, CA). Briefly, extraction solution (e.g.,
methanol/water/acetic acid) biased with high voltage was
guided to flow through the tissue sample for extraction and
electrospray ionization. In the current experimental approach,
the sequential detection of lipids, small metabolites, and
proteins from a single tissue sample (ca. 2.0 mm3) was
achieved in two stages. As shown in Figure 1, first, the
extraction solution of CH3OH/H2O (v/v, 35/65) was
employed for the iEESI-MS analysis, resulting in the
instantaneous extraction/ionization of lipids, which was
followed by the extraction/ionization of small metabolites
after continuous infusion for ca. 30−80 min under the same
experimental conditions. At last, the extraction solution was
altered to CH3OH/H2O/CH3COOH (v/v/v, 35/65/10), and
the extraction/ionization of proteins was enabled. For details
about the iEESI-MS experiment and working conditions, refer
to Supporting Information (Figure S1, S2 and S3).
Data Analysis. All raw data were processed through Soft

Independent Modeling of Class Analogies (SIMCA) (version
13.0, Umetrics, Umeå, Sweden), Matlab (version 7.8.0,

Mathworks, Inc., Natick, MA), R programming language
(version 3.5.1), and SPSS (version 18.0, SPSS Inc., Chicago,
IL, USA). First, the full scan MS data was exported to
Microsoft Excel, which was arranged using the m/z value as
independent variables and the signal intensity as dependent
variables. Then, the exported MS data was mass realigned
based on the m/z value in Matlab.13 Next, the aligned data was
used for orthogonal partial least-squares discriminant analysis
(OPLS-DA) modeling in SIMCA and support vector machine
(SVM) analysis in R, respectively. The OPLS-DA model
goodness of fit was evaluated through three quantitative
parameters (e.g., R2X is the explained variation in X, R2Y is the
explained variation in Y, and Q2Y is the predicted variation in
Y).14 In addition, permutation tests were performed with 200
iterations to validate the fitting quality of the model, and S-
plots were constructed to screen potential biomarkers that
contribute to the group differences. Total data were randomly
divided into training sets and validation sets at the ratios of 7:3
in SVM analysis.
Pearson correlation analysis using SPSS 18.0 was conducted

among the signal intensities of 19 signals with high variable
influence on projection (VIP) value for the discrimination of
cancerous and normal tissue samples, including small
metabolites (e.g., m/z 147, 175, and 203) (VIP > 1.0), lipids
(e.g., m/z 757, 773, 799, 825, and 849) (VIP > 1.0), and
protein ions (e.g., m/z 758, 797, 842, 883, 891, 935, 947, 993,
1010, 1082, and 1165) (VIP > 5.0). All correlation coefficients
calculated in SPSS were exported into Microsoft Excel, and
further picture presentations were achieved by program in
Matlab. Note that correlation analysis was only performed for
the cancerous tissue samples.

■ RESULTS AND DISCUSSION

iEESI-MS. iEESI-MS directly characterizes the molecular
information within the bulk sample without sample pretreat-
ment.10,11 Until now, iEESI-MS has been successfully applied
in multidisciplines such as plant metabolomics (including
direct molecular characterization of chemical compounds10,12

as well as ongoing enzymatic reactions in plant tissue
samples,11 etc.), food science (including rapid screening of
pork samples contaminated by β-agonists,15 quantitative
analysis various β-agonists in pork sample,16 direct evaluation
of metabolic effects of clenbuterol and salbutamol on pork
quality,17 identification of meat species based on hemoglo-
bin,18 and quantitative determination of fluoroquinolones from
raw milk,19 etc.), clinical analysis (including rapid discrim-
ination of tissue samples of human esophageal squamous cell
carcinoma,12 lung cancer,20 as well as endometriosis foci21 and

Figure 1. Schematic illustration of iEESI-MS for the sequential detection of lipids, small metabolites, and proteins in a single tissue sample.
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blood of ovarian cancer and healthy volunteers22 based on
differences in amino acid and phospholipids metabolism, etc.),
and environmental analysis (including quantification of 1-
hydroxypyrene in raw human urine samples,23 molecular
characterization of particulate matters from gasoline cars,24 and
fast quantification of fluoroquinolones in environmental water
samples,25 etc.). A potential issue of this technique is that cells
or smaller pieces of tissues may fall off during the analysis and
contaminate the instrument. Also, contamination of the
instrument is inevitable when large amounts of tissue samples
were continuously analyzed over a long period of time. To
address these problems, a disposable iEESI device which
allowed precise sampling of defined-volume tissue samples
(e.g., animal/plant tissue, etc.) with high reproducibility and
accuracy was developed. The robustness of this sampling
approach has been confirmed earlier.16 Besides, the Figure S4
and Table S1 further indicated that the good reproducibility of
iEESI-MS for tissue analysis. In future work, we will continue
to improve the performance of the disposable iEESI device for
the direct analysis of more types of real samples, including
tissues, fluids, and cells.
Parameter Optimization. Owing to the unique extrac-

tion/ionization process occurring inside the inner part of a
bulk sample, the intensity of ion signals in iEESI-MS showed a
strong correlation with the chemical composition of the
solution used for internal extraction of a bulk sample with
multiple ingredients.20 To screen the suitable solvents for
favorable extraction/ionization of small metabolites, lipids and
proteins originating from a single piece of human lung tissue
sample, porcine lung tissue samples, which are readily available
as a xenogeneic alternative to human lung for research
purposes,26 were chosen for parameter optimization. To
explore solvents favorable for the extraction of small
metabolites, a series of experiments were conducted using
each newly loaded individual porcine lung tissue sample with
different solvents including H2O (Figure S2A), CH3OH
(Figure S2B), CH3CH2OH (Figure S2E), CH3COOH (Figure
S2D), and CH3COCH3 (Figure S3E). However, the mass

spectra obtained with all solvents showed that only lipids in the
mass range of m/z 700−900 and no small metabolites were
acquired. Further, 21 extraction solutions composed of
CH3OH and H2O at different ratios (0−100%) were also
tested to achieve the best composition for extraction/
ionization of lipids. As a result, the CH3OH/H2O (v/v, 35/
65) solvent was chosen for iEESI-MS to profile lipids in the
lung tissue, because the highest abundance and density of
lipids were observed in the mass spectra. Interestingly, the
chemical profiling of small metabolites was also obtained using
the CH3OH/H2O (v/v, 35/65) solvent after continuous
infusion for ca. 30−80 min. This might be related either to the
exhaustion of lipids in tissue after ca. 30−80 min or to the
degradation of lipids caused by oxidation at ambient
conditions.27,28 Note that the time required to exhaust lipids
from the tissue sample varied dramatically from 30 to 80 min,
depending on how much tissue material was loaded for the
iEESI process. Similarly, signal levels of proteins were
optimized once acetic acid was added to CH3OH/H2O (v/v,
35/65) at 10.0% (Figure S4). Consequently, the extraction
solutions of CH3OH/H2O (v/v, 35/65) and CH3OH/H2O/
CH3COOH (v/v/v, 35/65/10) were selected for sequential
detection of lipids, small metabolites, and proteins in a single
tissue sample.
Under the optimized conditions, distinctive mass spectro-

metric profiles of lipids (Figure 2A), small metabolites (Figure
2C), and proteins (Figure 2E) within a single porcine lung
tissue sample were sequentially recorded using iEESI-MS with
the specific solvents such as CH3OH/H2O (v/v, 35/65) and
CH3OH/H2O/CH3COOH (v/v/v, 35/65/10). Note that
lipids (Figure 2A) showed up at 1 min using CH3OH/H2O
(v/v, 35/65), while small metabolites (Figure 2C) showed up
after injection and were maintained stably for 50 min using the
same solution. The lipids detected in the mass range of m/z
700−900 were tentatively identified as phosphatidylcholines
(PCs), including m/z 757 [PC(32:0) + Na]+, m/z 773
[PC(32:0) + K]+, m/z 783 [PC(36:4) + H]+, m/z 799
[PC(34:1) + K]+, m/z 809 [PC(36:2) + Na]+, and m/z 825

Figure 2. Comparative study of iEESI-MS and ESI-MS for the analysis of a single porcine lung tissue sample. (A) iEESI-MS spectrum obtained
using CH3OH/H2O (v/v, 35/65) for 1 min; (B) ESI-MS spectrum of the extraction solution of porcine lung tissue obtained using CH3OH/H2O
(v/v, 35/65) for 1 min; (C) iEESI-MS spectrum obtained using CH3OH/H2O (v/v, 35/65) for 50 min; (D) ESI-MS spectrum of the extraction
solution of porcine lung tissue obtained using CH3OH/H2O (v/v, 35/65) for 50 min; (E) iEESI-MS spectrum obtained by follow-up extraction
using CH3OH/H2O/CH3COOH (v/v/v, 35/65/10); (F) ESI-MS spectrum of the extraction solution of porcine lung tissue obtained by follow-up
extraction using CH3OH/H2O/CH3COOH (v/v/v, 35/65/10) for 1 min. (Note: (A), (C), and (E) in the left column are the mass spectra of
iEESI-MS; (B), (D), and (F) in right column are the mass spectra of ESI-MS.)
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[PC(36:2) + K]+ using precision mass measurement and
collision-induced dissociation (CID) data matching with the
literature.29−32 Accordingly, the small metabolites in the low
mass range (m/z 100−250) (Figure 2C) were identified as m/
z 132 [Creatine + H]+, m/z 147 [Glutamine + H]+, m/z 175
[Arginine + H]+, m/z 203 [Glucose + Na]+, and m/z 219
[Glucose + K]+. Over the continuous infusion of the CH3OH/
H2O (v/v, 35/65) solvent for 30−80 min, the MS signal
decreased almost to the baseline, indicating that the lipids were
exhausted. The mass spectrum was dominated by the signal of
small metabolites in the mass range of m/z 100−250. Then,
the protein signals (Figure 2E) were detected once the
CH3OH/H2O/CH3COOH (v/v/v, 35/65/10) was infused as
extractive solution without further hardware alteration. Clearly,
the protein ions corresponding to α and β subunits of
hemoglobin with wide charge state distributions (CSDs) in a
relatively high mass range (m/z 600−1900) were detected
(Figure 2E).13,33 This further confirmed that the iEESI-MS
technique is a solvent-dependent extraction process, which
could be a potential tool for the sequential detection of lipids,
small metabolites, and proteins in a single tissue sample.
For reference, the off-line extraction solution of a single

porcine lung tissue sample (Figure S5) was analyzed by direct
infusion electrospray ionization mass spectrometry (ESI-MS).
As shown in Figure 2, the iEESI-MS mass spectra (Figure 2A,
C, E in the left column) differed from the ESI-MS mass spectra
(Figure 2B, D, F in the right column). For example, large
amounts of the lipids, small metabolites, and proteins within a
single bulk tissue were sequentially detected by iEESI-MS
when the extraction solution was changed from CH3OH/H2O
(v/v, 35/65) to CH3OH/H2O/CH3COOH (v/v/v, 35/65/
10). On the other hand, no signal of lipids (Figure 2B) and
small metabolites (Figure 2D) was obtained for the extraction
solution of a single bulk tissue (ca. 2.0 mg) using CH3OH/
H2O (v/v, 35/65) analysis by ESI-MS. Even when CH3OH/
H2O/CH3COOH (v/v/v, 35/65/10) was used for extraction,
only a low abundance ions of α and β subunits of hemoglobin
were observed in ESI-MS (Figure 2F). The signal intensity of
protein ions obtained in ESI-MS was about 2 orders of

magnitude lower than that in iEESI-MS. We explain the
difference in signal intensity of protein ions between iEESI-MS
and ESI-MS by the fact that the volume of extraction solution
(50 μL) used for off-line ESI-MS extraction was larger than
that in on-line iEESI-MS extraction (less than 10 μL) for the
tissue sample (ca. 2.0 mg). As a result, the amount of analyte in
the electrospray solution for the direct infusion ESI-MS
process is relatively lower than that for on-line iEESI-MS
analysis. Alternatively, the inferior performance could also be
attributed to other factors such as lower ionization efficiency
and chemical interference in ESI-MS.16 The ESI-MS spectra
displayed strong background signal peaks at m/z 274 [N-
lauryldiethanolamine + H]+, m/z 279 [dibutyl phthalate + H]+,
and m/z 318 [N-(2-hydroxyethyl)-N-(2-(2-hydroxyethoxy)-
ethyl) dodecylamine + H]+, which are common MS
contaminants.34,35

The direct comparison between iEESI-MS and conventional
chromatographic approaches (such as liquid chromatography−
mass spectrometry (LC-MS)/gas chromatography−mass spec-
trometry (GC-MS)) for the analysis of tissues was not
undertaken in the present study. However, the direct
comparison between iEESI-MS and conventional chromato-
graphic approaches (LC-MS/GC-MS) for molecular quantifi-
cation of bulk samples was performed in previous work on
meat tissue samples. The results demonstrated that the limit-
of-detection (LOD) values obtained using iEESI-MS were
significantly lower than those obtained by conventional
methods (GC-MS and LC-MS), probably due to the higher
detection sensitivity by LTQ-MS instrument and higher
ionization efficiency of iEESI-MS. The measured accuracy
rates for iEESI-MS were in the range 92−105%.16

Possible Mechanism of Sequential Extraction of
Lipids, Small Metabolites, and Proteins. Lipids are
generally hydrophobic compounds,5,36 which would float on
the surface of the hydrophilic extraction solution of CH3OH/
H2O (v/v, 35/65) used in iEESI-MS analysis. Thus, the signals
of lipids were obtained prior to proteins and small metabolites.
The solvent would gradually diffuse into bulk tissue sample
over the time of iEESI analysis. Consequently, after the lipids

Figure 3. iEESI-MS of human lung tissue. (A, C) Mass spectra of normal tissue obtained using CH3OH/H2O (v/v, 35/65) as extractive solution
for 1 and 80 min, respectively, (E) mass spectrum of normal tissue obtained using follow-up extraction by CH3OH/H2O/CH3COOH (v/v/v, 35/
65/10) for 80 min, (B, D) mass spectra of cancerous tissue obtained using CH3OH/H2O (v/v, 35/65) as extractive solution for 1 and 70 min,
respectively, and (F) mass spectrum of cancerous tissue obtained by follow-up extraction using CH3OH/H2O/CH3COOH (v/v/v, 35/65/10) for
70 min. (Note: (A), (C), and (E) in the left column are the mass spectra of normal tissue; (B), (D), and (F) in the right column are the mass
spectra of cancerous tissue.)
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were exhausted over the continuous infusion of solvent
CH3OH/H2O (v/v, 35/65) for ca. 30−80 min, the signal of
small metabolites became dominant. Finally, intracellular
proteins were extracted by using the CH3OH/H2O/
CH3COOH (v/v/v, 35/65/10) solvent after cell lysis.
Sequential extraction of lipids, small metabolites, and proteins
in a single bulk tissue further indicated that iEESI-MS analysis
is a solvent-dependent extraction process.
Direct Analysis of a Single Human Tissue Sample. A

variety of ions were detected by iEESI-MS from either the
normal lung tissue (Figure 3A, C, E in left column) or
cancerous tissue (Figure 3B, D, F in right column). The
predominant peaks at mass range of m/z 700−900 were
identified as sphingomyelin (SM) and PCs, including m/z 726
[SM(34:1) + Na]+, m/z 742 [SM(34:1) + K]+, m/z 757
[PC(32:0) + Na]+, m/z 773 [PC(32:0) + K]+, m/z 783
[PC(36:4) + H]+, m/z 799 [PC(34:1) + K]+, m/z 809
[PC(36:2) + Na]+, m/z 825 [PC(36:2) + K]+, m/z 833
[PC(38:4) + Na]+, and m/z 849 [PC(38:4) + K]+, whereas
peaks at mass range of m/z 100−250 included m/z 147
[Glutamine + H]+, m/z 175 [Arginine + H]+, m/z 203
[Glucose + Na]+, and m/z 219 [Glucose + K]+. Chemical
assignment for the identified species from the tissue sample
using iEESI-MS/MS is shown in Table S2, and the CID
spectra of identified species are shown in Figure S6. Besides,
peaks of α and β subunits of human hemoglobin with wide
CSDs were evidently observed in the mass range of m/z 600−
1900. The predominant compound assignments were based on
high-resolution MS data, CID experiments, NIST/EPI/NIH
Mass Spectral Library, and comparison with earlier literature
data.22,29−32 These results provide evidence that the
established method could be used for the sequential detection
of lipids, small metabolites, and proteins in a single bulk
human tissue sample. By comparing the mass spectra of human
tissue samples (Figure 3) with porcine lung tissue samples
(Figure 2A, C, E), it was found that their mass spectra shared
high consistency in the majority of main characteristic peaks
with variations in relative abundance. This result indicated that
porcine lung tissue samples are suitable to optimize parameters
for the experiments on human lung tissues.
Note that the MS profiles recorded from the normal tissue

samples were significantly different from those recorded using
the cancer tissue samples. For example, the relative abundance

of m/z 757 [PC(32:0) + Na]+ in normal tissues was
significantly increased compared with that in cancerous tissues
(***P < 0.001), while the relative abundance of m/z 799
[PC(34:1) + K]+ in cancerous tissues was significantly
increased compared with that in normal tissues (*P < 0.05).
Also, m/z 773 [PC(32:0) + K]+ (**P < 0.01) was differentially
expressed between cancerous and normal tissues; these results
might indicate that PC species have different biological
behaviors in the cancerous area.31 Amino acids play an
important role in carcinogenesis and are potential biomarkers
in various cancers.37,38 The signal intensity of m/z 147
[Glutamine + H]+ was statistically significant between
cancerous and normal tissues (*P < 0.05). The difference of
m/z 147 [Glutamine + H]+ in cancerous and normal tissues
could be attributed to metabolically independent cancer cells
and a five to ten times faster rate of glutamine consumption
than normal cells.39 Besides, the intensity of hemoglobin in
normal tissues is higher than that in cancerous tissues. This
might be related to the fact that the concentration of iron in
cancerous tissue is significantly lower than in normal tissues,40

and that lung tissue is highly vascularized to favor O2/CO2
exchanges.

Differential Analysis of Cancerous Tissues from
Normal Tissues via OPLS-DA. To evaluate whether the
molecular information obtained from human tissue samples by
iEESI-MS is diagnostic and predictive of disease state,41 the
MS data obtained from a set of 48 tissue samples (including 24
cancerous tissue samples and 24 normal tissue samples) were
subjected to OPLS-DA for differentiation of cancerous and
normal tissue samples, seven data points for each tissue sample
on average. As shown in Figure 4, the score plots of OPLS-DA
based on small metabolites (Figure 4A), lipids (Figure 4B),
and proteins (Figure 4C) exhibited a clear differentiation
between cancerous and normal samples. This indicates that the
multiple layers of molecular information obtained by iEESI-MS
can be used to differentiate cancerous and normal tissues. For
the OPLS-DA model of small metabolites (Figure 4A), the
values of R2X, R2Y, and Q2Y were 0.812, 0.728, and 0.689,
respectively. For the OPLS-DA model of lipids (Figure 4B),
the values of R2X, R2Y, and Q2Y were 0.902, 0.824, and 0.65,
respectively. For the OPLS-DA model of proteins (Figure 4C),
the values of R2X, R2Y, and Q2Y were 0.708, 0.982, and 0.912,
respectively. Also, validation with 200 random permutation

Figure 4. Statistical analysis of iEESI-MS data obtained with sequential extraction for the analysis of cancerous and normal tissues. Score plots of
OPLS-DA of cancerous tissues (CA, blue squares) and normal tissues (CAB, green squares): (A) Small metabolites in the low mass range of m/z
100−250, (B) lipids in the mass range of m/z 700−900, and (C) proteins in the mass range of m/z 600−1900. Box plots of four selected peaks
from Figure S8A, B with high VIP value: (D) m/z 147 [Glutamine + H]+, (E) m/z 757 [PC(32:0) + Na]+, (F) m/z 773 [PC(32:0) + K]+, and (G)
m/z 799 [PC(34:1) + K]+. P values were determined with t test.
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tests of the PLS-DA model corresponding to the OPLS-DA
model (Figure S7) generated intercepts R2 = 0.225 and Q2 =
−0.564 for small metabolites (Figure S7A), R2 = 0.358 and Q2

= −0.444 for lipids (Figure S7B), and R2 = 0.775 and Q2 =
−0.009 for proteins (Figure S7C), indicating that the models
were not overfitted. Besides, S-plots (Figure S8) were
constructed to screen for potential low molecular weight
metabolite biomarkers, which displayed that small metabolites
(Figure S8A) including m/z 147 [Glutamine + H]+ and m/z
175 [Arginine + H]+, lipids (Figure S8B) including m/z 757
[PC(32:0) + Na]+, m/z 773 [PC(32:0) + K]+, m/z 825
[PC(36:2) + K]+, and m/z 849 [PC(38:4) + K]+, and protein
ions (Figure S8C) including m/z 758 (α+20), m/z 797 (α+19),
m/z 842 (α+18), m/z 883 (β+18), m/z 891 (α+17), m/z 935
(β+17), m/z 947 (α+16), m/z 993 (β+16), m/z 1010 (α+15), m/z
1082 (α+14), and m/z 1165 (α+13) were of high VIP value. This
was further confirmed using t test analysis of individual
potential biomarkers, box plots (Figure 4D−G) suggesting that
the differences of these characteristic compounds, including
m/z 147 [Glutamine + H]+ (Figure 4D), m/z 757 [PC(32:0)
+ Na]+ (Figure 4E), m/z 773 [PC(32:0) + K]+ (Figure 4F),
and m/z 799 [PC(34:1) + K]+ (Figure 4G), were statistically
significant between normal and cancerous tissues. These
results further demonstrated that the established method
could be applied to rapid differential analysis of cancerous and
normal tissues at the molecular level.
Evaluation of Cancer Prediction Accuracy. Higher

accuracy of cancer diagnosis will improve the patient’s survival
rate, ameliorate the cancer treatment strategy, and avert
unnecessary biopsy.42,43 To evaluate whether integrative
molecular information at different layers could improve the
cancer prediction accuracy, support vector machine (SVM), a
kind of supervised learning model in machine learning, was
applied to build a binary classification model.43 The perform-
ance of the model was evaluated through the comparison of
sensitivity, specificity, and accuracy of analysis (Table 1). With

respect to the individual compound class analysis, the
sensitivity, specificity, and accuracy obtained with integrative
information on small metabolites and lipids for cancer
prediction were improved from 54.0% to 67.0%, 51.0% to
100.0%, and 76.0% to 83.0%, respectively. The sensitivity and
accuracy obtained with integrative information on small
metabolites and proteins for cancer prediction were improved
from 54.0% to 100.0% and 77.0% to 99.0%, respectively.
Additionally, the sensitivity, specificity, and accuracy obtained
with the integrative information on either small metabolites,
lipids, and proteins or lipids and proteins for cancer prediction
were substantially improved from 54.0%, 51.0%, and 76.0% to
100.0%, respectively. These results revealed that the integrative
multilayers of molecular information could improve the cancer
prediction accuracy. Therefore, the established method
provides a new alternative diagnostic method for the accurate
identification of the edges of pathogenic tissues. The open
space for future research to further increase the accuracy of
cancer differentiation by the iEESI-MS approach would be to
use the negative polarity analysis in complement with the
positive polarity analysis. This should allow higher molecular
coverage and chemical specificity of differentiation.
Earlier experiments showed that lipids, small metabolites,

and proteins from a single tissue sample could be
simultaneously detected using CH3OH/H2O/CH3COOH
(v/v/v, 35/65/2.5) (Figure S2F). Mass spectra of normal
(Figure S9A) and cancerous (Figure S9B) tissue samples
clearly showed that a variety of ions were detected by iEESI-
MS using single extraction solution of CH3OH/H2O/
CH3COOH (v/v/v, 35/65/2.5). The predominant peaks at
mass range of m/z 100−250 included m/z 132 [Creatine +
H]+, m/z 175 [Arginine + H]+, m/z 203 [Glucose + Na]+, and
m/z 219 [Glucose + K]+. The signal peaks of phospholipids
included m/z 757 [PC(32:0) + Na]+, m/z 773 [PC(32:0) +
K]+, m/z 783 [PC(36:4) + H]+, and m/z 799 [PC(34:1) +
K]+. Also, peaks of α and β subunits of hemoglobin with wide
CSDs were evidently observed at higher mass range. To
compare the performance of cancer prediction using
integrative information on small metabolites, lipids, and
proteins acquired with and without sequential extraction, the
MS data (Figure S9) obtained from 9 tissue samples (including
4 normal tissue samples and 5 cancerous tissue samples) using
single extraction solution of CH3OH/H2O/CH3COOH (v/v/
v, 35/65/2.5) without sequential extraction were also analyzed
for reference (Figure 5), seven data points for each tissue
sample on average. The score plot of OPLS-DA (Figure 5A)
showed that cancerous and normal tissue samples were clearly
separated. Besides, the in-depth receiver operating character-
istic (ROC) curve (Figure 5B) showed that the sensitivity,

Table 1. Cancer Prediction Results of Different Chemical
Information Obtained Using SVM

Analytes Sensitivity Specificity Accuracy

Metabolites 54.0% 100.0% 77.0%
Lipids 100.0% 51.0% 76.0%
Proteins 100.0% 98.0% 99.0%
Metabolites + Lipids 67.0% 100.0% 83.0%
Metabolites + Proteins 100.0% 98.0% 99.0%
Lipids + Proteins 100.0% 100.0% 100.0%
Metabolites + Lipids + Proteins 100.0% 100.0% 100.0%

Figure 5. Statistical analysis of iEESI-MS data of cancerous and normal tissues obtained using single extraction solution of CH3OH/H2O/
CH3COOH (v/v/v, 35/65/2.5) without sequential extraction. (A) Score plots of OPLS-DA of cancerous tissues (CA, blue squares) and normal
tissues (CAB, green squares). (B) The ROC curve illustrates the performance of cancer prediction.
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specificity, and area under the curve (AUC) obtained with the
integrative information on small metabolites, lipids, and
proteins for cancer prediction was 100.0%, 60.0%, and
79.0%, respectively. Apart from the sensitivity, the specificity
(60.0%) and accuracy (79.0%) obtained without sequential
extraction are significantly lower than the specificity (100.0%)
and accuracy (100.0%) obtained with sequential extraction.
These results indicate that integrative information on lipids,

small metabolites, and proteins by the method with sequential
extraction showed higher specificity and accuracy for cancer
prediction.

Assessment of Systematic Error of Homologous
Samples Analysis. For the OPLS-DA model, a variable
influence on projection (VIP) is commonly used to summarize
the importance of the variables to the model; variables with
VIP of greater than 1.0 are considered to have differential

Figure 6. Correlation analysis of 19 signals with VIP of greater than 1.0 for the discrimination of cancerous and normal tissue samples. The 19
signals included small metabolites (including m/z 147, 175, and 203), lipids (including m/z 757, 773, 799, 825, and 849), and protein ions
(including m/z 758, 797, 842, 883, 891, 935, 947, 993, 1010, 1082, and 1165). (A-C), (D-F), (G-I), (J-L), (M-O), (P-R), and (S-U) correspond to
the correlation analysis of 19 compounds mentioned above in three individual tissue samples from patient 1, patient 2, patient 3, patient 4, patient
5, patient 6, and patient 7, respectively. Note: the gradient from green to red (the value range from 0 to 1) indicates that the positive correlation
gradually increases. The gradient from green to blue (the value range from 0 to −1) indicates that the negative correlation gradually increases.
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reliability and a statistically significant contribution to the
model.44,45 To assess the systematic error of homologous
samples analysis, 19 signals (including small metabolites (e.g.,
m/z 147, 175, and 203) (VIP > 1.0), lipids (e.g., m/z 757, 773,
799, 825, and 849) (VIP > 1.0), and protein ions (e.g., m/z
758, 797, 842, 883, 891, 935, 947, 993, 1010, 1082, and 1165)
(VIP > 5.0)) contributing to discrimination of cancerous and
normal tissues were selected for correlation analysis. The result
showed that even though a high degree of consistency was
obtained among each individual tissue sample of the same
specimen, with the range of correlation coefficients were 0.805
to 0.953 (Table S3), the relationship among small metabolites,
lipids, and protein ions in three individual tissue samples
showed no consistent patterns (Figure 6). Therefore, our
results suggest that the outcomes of metabolomics, lipidomics,
and proteomics acquired from each individual tissue sample
might lead to the mismatch due to the systematic error of
homologous samples analysis. In this regard, the ability of
integrative analysis of multiple layers of molecular information
from a single sample is desirable, as it can be helpful to reduce
the systematic error of homologous samples analysis.

■ CONCLUSIONS

To conclude, sequential detection of lipids, small metabolites
and proteins using exactly the same bulk tissue was
demonstrated by iEESI-MS, requiring neither sample reloading
nor instrumental hardware alteration. As demonstrated in this
study, using 57 lung cancer samples of 13 patients, with respect
to the individual compound class analysis, the sensitivity,
specificity, and accuracy of the established strategy for cancer
prediction were improved from 54.0%, 51.0%, and 76.0% to
100.0%, respectively, thus providing a novel analytical tool for
advanced applications in precision molecular diagnosis and
systems biology studies with minimized systematic errors, low
sample consumption (ca. 2.0 mg), and simple operation.
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