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Abstract Metabolomics techniques are the comprehensive
assessment of endogenous metabolites in a biological sys-
tem and may provide additional insight into the molecular
mechanisms. Er-Zhi-Wan (EZW) is a traditional Chinese
medicine formula, which contains Fructus Ligustri Lucidi

(FLL) and Herba Ecliptae (HE). EZW is widely used to
prevent and treat various liver injuries through the nour-
ishment of the liver. However, the precise molecular
mechanism of hepatoprotective effects has not been com-
prehensively explored. Here, an integrated metabolomics
strategy was designed to assess the effects and possible
mechanisms of EZW against carbon tetrachloride-induced
liver injury, a commonly used model of both acute and
chron ic l ive r in tox ica t ion . High-pe r fo rmance
chromatography/quadrupole time-of-flight mass spectrome-
try (HPLC/QTOF-MS) combined with chemometric ap-
proaches including principal component analysis (PCA)
and partial least squares-discriminant analysis (PLS-DA)
were used to discover differentiating metabolites in meta-
bolomics data of rat plasma and urine. Results indicate six
differentiating metabolites, tryptophan, sphinganine,
tetrahydrocorticosterone, pipecolic acid, L-2-amino-3-
oxobutanoic acid and phosphoribosyl pyrophosphate, in
the positive mode. Functional pathway analysis revealed
that the alterations in these metabolites were associated
with tryptophan metabolism, sphingolipid metabolism, ste-
roid hormone biosynthesis, lysine degradation, glycine,
serine and threonine metabolism, and pentose phosphate
pathway. Of note, EZW has a potential pharmacological
effect, which might be through regulating multiple
perturbed pathways to the normal state. Our findings also
showed that the robust integrated metabolomics techniques
are promising for identifying more biomarkers and path-
ways and helping to clarify the function mechanisms of
traditional Chinese medicine.
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Introduction

Metabolomics has emerged as a powerful approach in systems
biology, focusing on a holistic investigation of the small
molecular response of living systems to external stimuli,
based on global metabolite profiles in biological samples such
as plasma, urine, or tissue [1]. Metabolite profiling has enor-
mous potential for the characterization of pathological states
in animals [2] and humans [3], as well as providing diagnostic
information and presenting mechanistic insight into biochem-
ical effects of drugs [4, 5]. Metabolomics is also an ideal tool
to bridge the gap between traditional Chinese medicine
(TCM) and molecular pharmacology, partially shedding light
on the interacting mechanism between herbal medicine and
organism [6–8]. Several groups reported the application of
metabolomics of TCM focused on understanding the patho-
physiology and assisting in the liver injury or liver diseases [9,
10].

Er-Zhi-Wan (EZW), a famous traditional Chinese formu-
lation firstly recorded in “Yi Bian” written in the Ming Dy-
nasty, contains two herbs viz. Fructus Ligustri Lucidi (FLL)
and Herba Ecliptae (HE). This formulation possesses the
actions of tonifying the liver and kidney yin, nourishing
body’s essential fluid, and arresting hemorrhage [11]. Phar-
macological results indicated that EZW could have the abili-
ties of being hepatoprotective [12], anti-aging [13], activating
the estrogenic response [14], and anti-osteoporosis [15]. In our
research group, the hepatoprotective property of EZW on the
mice liver was determined by the activity determination of
serum alanine aminotransferase (ALT) and aspirate amino-
transferase (AST), superoxide dismutase (SOD),
malondialdehyde (MDA), and the hepatic pathological chang-
es following the treatment [16], indicating the significant
recovery action of EZW. In the Pharmacopoeia of the People’s
Republic of China [11], the main compounds of EZW,
specnuezhenide, wedelolactone, and oleanolic acid, were used
to control the quality of FLL, HE, and EZW, respectively.
Specnuezhenide is a water-soluble biologically active com-
pound for protecting the natural killer cytotoxicity from inhi-
bition induced by cyclophosphamide and dexamethasone
[17]. There was also a report of isolated wedelolactone from
HE on suppressing LPS-induced caspase-11 expression by
directly inhibiting the IKK Complex, which was tested under
in vitro conditions onHeLa cells [18]. Oleanolic acid provides
protection against experimental hepatic injury in rats and has
been used as an oral remedy for human liver dysfunction [19,
20]. Pretreatment with oleanolic acid also considerably de-
creases augmentation of serum ALT activity and hepatic
centrilobular necrosis induced by chemical hepatotoxicants
in mice [21, 22]. However, the action mechanism of the
overall effect of EZW has not been studied.

To further investigate the hepatoprotective effect and
mechanism of EZW, acute liver injury in rats was induced

by the hepatoxicant CCl4 that produces acute liver injury in
rodents [23–25]. In recent years, many metabolomics investi-
gators have entered the field of hepatobiliary disease and a
considerable volume of publications has appeared [26–28].
The aim of the present study was to find metabolite bio-
markers to increase the understanding of the hepatoprotective
properties of EZW for the first time. Therefore, a novel
strategy for integrated plasma and urine metabolomics was
described in this paper based on high-performance
chromatography/quadrupole time-of-flight mass spectrometry
(HPLC/QTOF-MS) and chemometric analysis (Fig. 1).

Materials and methods

Chemicals and materials

Acetonitrile and formic acid were obtained from Merck
(Darmstadt, Germany). Deionized water was purified using
a Milli-Q system (Millipore, Bedford, MA, USA). Leucine
enkephalin was purchased from Sigma-Aldrich (MO, USA).
Carbon tetrachloride (analytical grade) was purchased from
Linfeng Chemical Co. (Shanghai, China). Fructus Ligustri
Lucidi and Herba Ecliptae was identified by Professor Qinan
Wu of Traditional Chinese Medicine Identification at Nanjing
University of Chinese Medicine and purchased from
Yonggang Decoction Pieces Co. (Bozhou, Anhui, China).
Voucher specimens were deposited at the authors’ laboratory.

Preparation of EZW sample

EZW was prepared as follows: the powder of dry HE (50 g)
was immersed in 500 mL of distilled water, decocted by
boiling for 1 h and filtered through 16-layers of gauzes. The
process above was repeated twice. The extracted solutions
were pooled together and concentrated to approximately
0.3 g of HE per milliliter. Finally, the solution was freeze-
dried. Before administration, the powder of dry FLL and
freeze-dried HE were dissolved in 0.5 % sodium salt of
carboxy methyl cellulose (CMC-Na) solution. One milliliter
CMC-Na solution contained approximately 0.6 g of FLL and
0.6 g of HE crude drugs, respectively. For the quality control
of EZW, four main compounds, nuezhenide, specnuezhenide,
wedelolactone, and oleanic acid, were determined by a HPLC-
UV system on a C18 column [29]. The HPLC-UVmethod and
chromatograms of standards and EZW sample were shown in
Figure S3 of Supplemental material. The content of
nuezhenide, specnuezhenide, wedelolactone, and oleanic acid
were 0.337, 3.582, 0.109, and 11.536 mg/g, respectively. All
the index compounds, specnuezhenide, wedelolactone, and
oleanic acid in EZW sample for our metabolomics study
exceeded the demands of the Pharmacopoeia of the People’s
Republic of China, 2010 Edition.
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Animal handling and sample preparation

Male Wistar rats (weighting 200±20 g) were supplied by the
Experimental Animal Center of Nanjing University of Chinese
Medicine (Jiangsu, China). Animal welfare and experimental
procedures were strictly in accordance with the Guide for the
Care and Use of Laboratory Animals (US National Research
Council 1996, http://www.nap.edu/openbook.php?record_id=
5140&page=R1) and the related ethics regulations of Nanjing
University of Chinese Medicine. All animals were fostered in
an environmentally controlled breeding room (temperature
maintained at about 25 °C and with a 12-h light/12-h dark
cycle) for at least 1 week before starting the experiments and
fed with standard laboratory food and water ad libitum. All the
rats were randomly divided into four groups of seven rats each
as follows: control group, model group, EZW-prevented group
and EZW-treated group. The EZW-prevented group was orally
administrated with EZW solution (1.2 gmL−1, 18 g kg−1 day−1)
for 7 days. Meanwhile, the control, model, and EZW-treated
groups were given orally with a volume of 0.5 % CMC-Na
solution. After 1 h of the last drug administration, rats in the
control group were injected intraperitoneally with soybean oil
(1.5 mL kg−1), and the model, EZW-prevented and EZW-
treated groups were intraperitoneally injected with 50% carbon
tetrachloride soybean oil solution (1.5 mL kg−1). After 2 h of
liver injuring, the EZW-treated group was orally administrated
with EZW solution (1.2 g mL−1, 18 g kg−1 day−1) twice in 12 h.
Then, urine was collected for 24 h from metabolism cages at
ambient temperature throughout the procedure and centrifuged
(13,000 r min−1) at 5 °C for 15 min. The supernatants were
stored frozen at −80 °C for analysis. At the end of 24 h, blood
from ophthalmic vein plexus was collected in Eppendorf tube,

diluted with a 10 % disodium-EDTA solution, and centrifuged
(13,000 r min−1) for 10 min. The supernatant, plasma, was
stored frozen at−80 °C for metabolomics analysis. Lastly, the
liver tissue was cut for pathological section diagnosis and
electron microscopic observation.

Metabolic profiling

Plasma metabolite profiling

Frozen plasma samples were thawed and the protein in 200 μl
of plasma was precipitated by adding 600 μl methanol. The
solutions were centrifuged at 13,000 r min−1 for 10 min. The
resulting supernatants were dried under vacuum and
reconstituted in 0.2 mL acetonitrile/water (80:20). The solu-
tion was then filtered by 0.25 μm membrane for injection. A
pooled sample, which was a mixture of small random volumes
from all 28 samples, was extracted in the same procedure as
above. This sample was used as quality control (QC) and
analyzed before or after every seven samples. Two microliters
of filtrate was analyzed by an Agilent 6520 HPLC-QTOF
system (Agilent Technologies, Santa Clara, CA) consisting
of an Agilent 1200 SL liquid chromatograph coupled with a
time-of-flight (TOF) mass spectrometer. An Agilent Poroshell
120 EC-C18 column (2.1×100 mm, 2.1 μm) with a binary
solvent system (solvent A: water with 0.1 % formic acid and
solvent B: 0.1 % formic acid in acetonitrile) was utilized. The
gradient conditions were linear at 5–60 % B over 0–15 min,
60–90 % B over 15–30 min, and 90 %–100 % B over 30–
40 min. The flow rate was 0.35 mL min−1 and the column
temperature was maintained at 30 °C. Electrospray ionization
(ESI) was used in positive mode. The MS interface capillary
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Fig. 1 Overview of the integrated metabolomics strategy. Vehicle, 0.5 % sodium salt of carboxymethyl cellulose (CMC-Na); EZW, FLL and freeze-
dried HE were dissolved in 0.5 % CMC-Na solution; CCl4, 50 % carbon tetrachloride soybean oil solution
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wasmaintained at 350 °C, with a sheath gas flow of 8 Lmin−1.
The spray voltage for positive ion injection was 4.0 kV. The
instrument was scanned over a range of 50∼1700m/z. Agilent
MassHunter Workstation LC-TOF and QTOF Acquisition
software (B.02.01) was used for data acquisition. The typical
total ion chromatograms of plasma of four groups were shown
in Fig. S1 in the Electronic Supplementary Material (ESM).

Urinary metabolite profiling

Frozen urine samples were thawed, and 500 μl of methanol
was added to 500 μl urine. The solutions were centrifuged at
13,000 rpm for 10 min. The resulting supernatants were
filtered by 0.25 μm membrane for further analysis. A pooled
sample, which was a mixture of small random volumes from
all 28 samples, was processed in the same procedure as above.
This sample was used as quality control and analyzed before
or after every seven samples. LC/MS analysis was performed
by the same Agilent 6520 HPLC/QTOF-MS system. The
samples were gradient-eluted at 0.35 mL min−1 using (A)
0.1 % formic acid in water and (B) 0.1 % formic acid in
acetonitrile (10 % B to 30 % B over 0–5 min, 30 % B to
50% B over 5–8 min, 50% B to 60 % B over 8–10 min, 60%
B to 90 % B over 10–13 min). A 5-μL sample aliquot was
injected onto a 2.1×100 mm Agilent Poroshell 120 EC-C8
2.7 μm particle column heated to 30 °C. Electrospray ioniza-
tion (ESI) was used in positive mode. The MS interface
capillary was maintained at 350 °C, with a sheath gas flow
of 8 L min−1. The spray voltage for positive ion injection was
4.0 kV. The instrument was scanned over a range of 50∼1700
m/z. Agilent MassHunter Workstation LC-TOF and QTOF
Acquisition software (B.02.01) was used for data acquisition.
The typical total ion chromatograms of urine of four groups
were shown in ESM Fig. S2.

Pathological evaluation

After the blood and urine collection, rats were euthanized and
portions of liver were harvested for pathological evaluation.
The liver portions were subsequently embedded in paraffin
wax and stained with H&E, after which pathological analysis
was carried out to assess steatosis, inflammation, and necrosis
via light microscopy (Olympus, Japan). Liver pathology was
evaluated as described by Nanjiet al [30].

Multivariate data analysis and data processing

All chromatographic data from plasma and urine were proc-
essed in the same manner by the freely available software
package MZmine 2.20 (http://mzmine.sourceforge.net/),
which performed peak seeking in an automated and
unbiased way using mzdata file from Agilent MassHunter
Workstation Data Acquisition. MZmine 2.20 was used for

peak noise removal, peak detection, and alignment. The
intensity of each ion was normalized with respect to the total
ion count to generate a data matrix that consisted of the
retention time, m/z value, and the normalized peak area. The
parameters of MZmine 2.20 in this study are listed in ESM
Table S1.

An overview about the similarity between the data sets can
be obtained by calculating their correlation. Matrix correlation
is a generalization of variable correlation, and several matrix
correlation methods exist [31]. To illustrate the overlap degree
of the plasma and urine LC/QTOF-MS data, the random
variables (RV) coefficient [32] is the most appropriate for
the current situation [33], because it is orientation-
independent and easily calculated from the data. LC/QTOF-
MS datasets were the m-by-n matrices (m the number of
samples; n the number of ion peaks) containing values of
ion peak area at different retention time and/or m/z. However,
directly applying such modality on crude data would result in
spurious results due to the high dimensionality of the LC/
QTOF-MS datasets. Therefore, a dimension reduction using
principal component analysis (PCA) was performed to reduce
the unnecessary information of the data sets. After that, the RV
coefficient was calculated to measure the degree of overlap
between matrices.

One of the goals in metabolomics area of research is to use
data obtained from your samples to build an appropriate
model for classification and determine the factors leading to
differences among the samples. PCA and PLS-DA are often
used for this purpose, as these techniques determine orthogo-
nal latent variables that describe the input data and classify the
data based on these variables [34]. PCA applied on matrix
X—the objective is to recover the total variance from all
datasets, but the presence of groups (products) in the data is
not explicitly taken into account in the computation of the
principal components. Partial least squares (PLS) is a partic-
ularly useful algorithm. Simply put, PLS is an extension of
PCA, a non-supervised method to maximizing variance ex-
plained inX, which insteadmaximizes the covariance between
X and Y (s). Before multivariate data analysis, ANOVA in
Matlab software version 6.5 was used to eliminate the non-
significant variables with the p value>0.05 for the plasma and
urine data sets, respectively. For a straightforward and conve-
nient explanation of metabolites, the LC/QTOF-MS data of
plasma and urine from the same rat were simply concatenated
and processed as a single data set. Then, the combined data set
was exported into SIMCA-P software 11.5 (Umetrics AB,
Umeå, Sweden) for projections to latent structures discrimi-
nate analysis (PLS-DA). Since the scale of metabolite con-
centrations may be different between plasma and urine, the
unit variance (UV) scaling was selected to preprocess the data
prior to PLS-DA and leave 1/7 out cross validation was used
to determine the optimal model. The purpose of PLS-DAwas
to calculate models that differentiate between groups or
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classes. In the PLS-DA modeling, the samples from different
groups were sorted into different classes using score plots, and
endogenous metabolites that contribute to the classification
were found by variable importance in the projection (VIP)
values, which showed the importance of each variable to the
classification. For measuring the quality of clustering within a
PLS-DA scores plot, the degree-of-class-separation (DCS)
was calculated between four groups, which was defined as
the class-to-class variance divided by the sum of the within
class variance on a scores plot using two sample types in the
training set [35].

Biomarker identification and metabolic pathway analysis

With regard to the identification of biomarkers, the ion spec-
trum was matched with the structure message of metabolites
acquired from available biochemical databases, such as
METLIN (http://www.metlin.scipps.edu/) [36], HMDB
(http://www.hmdb.ca/) [37] and KEGG (http://www.genome.
jp/kegg/) [38]. The pathway analysis of potential biomarkers
was performed with MetPA software based on the pathway
library of Rattus norvegicus (rat) to identify the metabolic
pathways. MetPA is now part of MetaboAnalyst (http://
www.metaboanalyst.ca/MetaboAnalyst/faces/Home.jsp) [39].

Results and discussion

Pathological study

Figure 2 shows the representative pathological slices of rat
livers from the control group (a), model group (b), EZW-
prevented group (c), and EZW-treated group (d). Typical
pathological characteristics of liver injury, such as swollen
endothelial cells and thickened endomembrane were observed
in CCl4-treated rats (Fig. 2b). For EZW-prevented group and
EZW-treated group, similar pathological features of liver in-
jury were still observed; however, these symptoms were less
obvious (Fig. 2c, d). Additionally, compared to EZW-treated
group, the protective function of EZW was better in EZW-
prevented group. The above phenomena indicated that the
artificial modeling of liver injury in rats was successful and
that the pathological condition was improved with adminis-
tration of EZW.

The correlation between plasma and urine metabolomics
datasets

The RV coefficient takes values between 0 (no overlap) and 1
(total overlap), measuring the closeness of two data set that
may each be represented in a matrix. After mean centering,
PCA was used to reduce the dimension of plasma and urine

data matrices. Then, the RV coefficient was calculated to
measure the degree of overlap (Table 1). The cumulative
amounts of explained variation of the principal components
in both plasma and urine matrices are larger than 90 % for six
to ten principal components, representing the major informa-
tion in the data sets. After the first seven components, the RV
coefficient is 0.26, and it is constant for more components.
This means that there is an overlap between the plasma and
urine data sets. Hence, it is helpful to combine these two data
sets.

Chemometric analysis with plasma and urine metabolomics
data

As a first step in chemometric analysis, PCA, an unsupervised
multivariate data analysis technique, was performed to visu-
alize grouping trends and outliers in data. Principal compo-
nent 1 versus principal component 2 score plots of the plasma
and urine data are shown in Fig. 3a, b, respectively. The QC
samples clustered tightly in both score plots, illustrating the
stability of the LC/MS platform throughout the analysis. To
reflect the metabolite difference among control, EZW-
prevented, EZW-treated, and model groups along with the
efficacies of EZW against the liver injury, PLS-DA was
employed to construct the model where the variable matrix
was made up of LC/MS ion peak areas of plasma and urine
metabolite. Generally, the quality of PLSmodel was evaluated
by the relevant R2X (the cumulative fraction of sum of squares
of X explained by components), R2Y (the cumulative sum of
squares of all the y-variables explained by the extracted com-
ponents), and Q2Y (the fraction of the total variation of Y
(PLS) that can be predicted by the extracted components).
Without a high R2Y, it is impossible to obtain a high Q2Y. A
Q2Y>0.5 is regarded as good and a Q2Y>0.9 as excellent, but
these guidelines are of course heavily application dependent.
Differences between R2YandQ2Y larger than 0.2∼0.3 indicate
the presence of many irrelevant model terms or a few outlying
data points [40]. Different data pretreatment methods, i.e.,
centering, autoscaling, and Pareto-scaling, were found to
greatly affect the outcome of the data analysis and thus the
rank, from a biological point of view, of the most important
metabolites [41]. The data pretreatment methods used prior to
data analysis were tested in our study (see ESMTable S2), and
the “UV (autoscaling)” was selected for further PLS-DA.

As shown in Table 2, the values of R2X, R2Y, and Q2Y
were also acceptable for single plasma or urine data sets,
but the combination of two data sets supplied better
results (R2Y=0.985, Q2Y=0.937), indicating an excellent
prediction. Compare to the result before ANOVA, the
lower latent variable number and the lower difference
(0.048) between R2Y and Q2Y further make the analysis
stable and confident. The compared performances of PLS-
DA are shown in the 3D-score plots (Fig. 4). In Fig. 4A,
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B, the single source of metabolomics data, plasma, or
urine, could not make the border obvious among the four
groups. In the same direction, the distribution among four
groups was more obvious for the combined plasma and
urine data sets (Fig. 4c), suggesting the more discriminant
information from the integrated metabolomics data. In this
work, the quantitative index, DCS, on the PLS-DA scores

plot was also calculated between different groups from the
integrated and single data sets (see ESM Table S3–S5).
For the integrated plasma and urine data, the DCS be-
tween Control and Model groups was 10.5617, it was
12.2244 between Control and EZW-prevented groups,
and it was 8.6144 between Control and EZW-treated
groups. This metric was 9.4230 between Model and

Fig. 2 Pathological photographs
of rat livers (H & E, ×100). a
Control; b Model; c EZW-
prevented; d EZW-treated

Table 1 Correlation between the plasma and urine metabolomics data matrices

PCsa Plasma (%) Urine (%) RVd

Varianceb Cumulative variancec Variance Cumulative variance

1 42.93 42.93 45.41 45.41 0.0189

2 35.51 78.44 26.50 71.91 0.2022

3 8.05 86.49 12.11 84.02 0.2324

4 3.42 89.91 5.21 89.23 0.2455

5 3.02 92.93 2.09 91.32 0.2525

6 1.73 94.66 1.47 92.80 0.2564

7 1.62 96.28 1.06 93.87 0.2615

8 0.78 97.06 0.85 94.72 0.2639

9 0.68 97.74 0.77 95.50 0.2646

10 0.62 98.36 0.67 96.16 0.2656

aPCs principal components
b The percentage of explained variance for each PC
c The cumulative percentage of explained variance
d The RV coefficient: a matrix correlation coefficient
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EZW-prevented groups and 6.2819 between Model and
EZW-treated groups. Most of the DCS values showed
how much better can PLS-DA cluster the different groups
using the integrated data set than using the single data set.
The PCA 3D-score plot (see ESM Fig. S4) and its DCS
values (see ESM Table S6) were also compared with
those of PLS-DA’s, and we can find less DCS values
and worse separation.

Tentative identification of the biomarkers and pathway
analysis

The PLS-DA model built above simultaneously considers the
plasma and urine metabolomic profiles, and then variable
selection is brought forth as the important practical issues for
metabolomics. The data set was screened with a VIP value
larger than 1.0 for further metabolite identification. Seven
potential biomarkers are summarized in Table 3 with their
corresponding retention time,m/z, formula, adduct ion, trends,
and related metabolic pathways. Differentially expressed me-
tabolites were pipecolic acid, tryptophan, sphinganine, and
tetrahydrocorticosterone in plasma. In addition, pipecolic ac-
id, L-2-amino-3-oxobutanoic acid, and phosphoribosyl pyro-
phosphate were significant metabolites in urine. All of them
have the direction of perturbation (up- or downregulation) in
the four groups. They could be considered as potential
markers for biological pathway analysis. Compared with other
multiplatform metabolomics data analysis [42, 43], it has
indicated that a better discriminate model could be built with
the integrated plasma and urine data from the separation of
different groups in Fig. 4 and the DCS values. This data
processing of combination could help us to search the most

Fig. 3 The score plots of
principal components analysis.
(a) plasma, R2X=0.645,
Q2=0.395; (b) urine, R2X=0.778,
Q2=0.584

Table 2 Summary of PLS-DA

Profiles Aa R2X R2Y Q2Y Differenceb

Plasma 8 0.883 0.973 0.870 0.103

Plasmac 5 0.719 0.917 0.812 0.105

Urine 7 0.725 0.979 0.880 0.099

Urinec 4 0.629 0.935 0.875 0.060

Plasma+urine 7 0.700 0.981 0.913 0.068

Plasma+urinec 6 0.672 0.985 0.937 0.048

a The number of latent variables
b The difference between R2 Y and Q2 Y
c The data after ANOVA
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significant biomarkers in the samples according to the best
model. And an important biomarker, pipecolic acid, has been
detected in both plasma and urine, which really exists in the
above two kinds of samples [44].

Metabolite profiling focuses on the analysis of a group of
metabolites related to a specific metabolic pathway in biolog-
ical states [45, 46]. To determine whether our observations of
changes in the metabolites in the setting of liver injury in fact
reflected coordinate changes in defined metabolic pathways,
we used the pathway library of R. norvegicus (rat) in MetPA
software to identify the most relevant pathways involved in
the conditions under study. Six metabolic pathways,

tryptophan metabolism, sphingolipid metabolism, steroid hor-
mone biosynthesis, lysine degradation, glycine, serine and
threonine metabolism, and pentose phosphate pathway, were
identified (Table 3).

Effects of EZWon the metabolic pathway

The changed concentrations of potential biomarkers (Table 3)
suggested that the disturbed pathways in liver injury rats, such
as tryptophan metabolism, sphingolipid metabolism, steroid
hormone biosynthesis, lysine degradation, glycine, serine and
threonine metabolism, and pentose phosphate pathway, were

Fig. 4 The 3D score plot (t1/t2/t3) of PLS. (a) plasma, R2X=0.719, R2Y=0.917, Q2Y=0.812; (b) urine, R2X=0.629, R2Y=0.935, Q2Y=0.875; (c)
plasma+urine, R2X=0.672, R2Y=0.985, Q2Y=0.937
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affected by the administration of EZW. According to the PLS
score plot (Fig. 4), the metabolic patterns of the rats subjected
to control, EZW-prevented, EZW-treated, and model groups
were not discriminated visibly with the single plasma or urine
dataset. The result of integrated data showed clear separation
in the PLS score plot (Fig. 4c), indicating the existence of
differences among four groups. In order to further demonstrate
the action of EZW, the PLS score plot (t2 versus t3) was
shown in Fig. 5. Compared to the model group, the EZW-
prevented, control, and EZW-treated groups were situated at
the same level in the score plot, indicating the recovery of
body to some extent after the administration of EZW.

Here, the important plasma and urine biomarkers associat-
ed with liver injury and EZW-treated modulation were ana-
lyzed in these pathways (Fig. 6). Tryptophan is an essential
amino acid in the tryptophan metabolism. Amino acids, in-
cluding tryptophan, act as building blocks in protein biosyn-
thesis through the action of tryptophanyl tRNA synthetase.
This metabolite demonstrated that abnormal metabolism oc-
curred in the model animals and metabolic analysis of liver
injury was inferred from changes in the intermediates during
substance metabolism [47].

In sphingolipids metabolism, sphinganine is ubiquitous but
essential structural and functional components of the cell. As a

Table 3 Potential biomarkers and their metabolic pathways in the pathway library of Rattus norvegicus

Matrix No R.T.(min) Mass (m/
z)

Adduct
ion

Delta Formula Compound Trenda Trendb Trendc Related pathways

Plasma 1 1.218 130.0856 M+H 0.0006 C6H11NO2 Pipecolic acid ↑ ↓ ↓ Lysine degradation

2 2.6 227.0788 M+Na 0.0002 C11H12N2O2 L-Tryptophan ↓ ↑ ↑ Tryptophan metabolism

3 9.427 340.2613 M+K 0.0001 C18H39NO2 Sphinganine ↓ ↑ ↑ Sphingolipid metabolism

4 9.576 351.2525 M+H 0.0005 C21H34O4 Tetrahydrocorticosterone ↑ ↓ ↓ Steroid hormone
biosynthesis

Urine 1 0.712 130.0874 M+H 0.0011 C6H11NO2 Pipecolic acid ↑ ↓ ↓ Lysine degradation

2 0.845 140.0263 M+Na 0.0055 C4H7NO3 L-2-Amino-3-
oxobutanoic
acid

↑ ↓ ↓ Glycine, serine and
threonine metabolism

3 10.22 390.9554 M+H 0.0037 C5H13O14P3 Phosphoribosyl
pyrophosphate

↑ ↓ ↓ Pentose phosphate
pathway

a ↑ or ↓ represents the up- or downregulation of the metabolites in model group compared with the control group
b ↑ or ↓ represents the significant up- or downregulation of the metabolites in EZW-prevented group compared with the model group
c ↑ or ↓ represents the significant up- or downregulation of the metabolites in EZW-treated group compared with the model group

Fig. 5 The PLS-DA scores (t2/t3) plot of integrated plasma and urine data. R2X[2]=0.161, R2X[3]=0.119
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sphingolipid metabolite, sphinganine-1-phosphate is pro-
duced by the ATP-dependent phosphorylation of sphinganine
by sphingosine kinases 2 in sphingolipid metabolism. It has
important biological roles in various physiological as well as
pathophysiological events. Recently, sphinganine-1-
phosphate has been reported to protect against both liver and
kidney injury [48]. In this study, the decreased concentration
of sphinganine in the model group indicates that the CCl4-
injured rats might lose the protection of normal metabolite.
Tetrahydrocorticosterone is the compound in the steroid hor-
mone biosynthesis. Recently, Lucki [49] has discussed how
steroid hormones control sphingolipid metabolism and
sphingolipids, including ceramide, sphingosine-1-phosphate,
and sphingosine, have been found to modulate steroid hor-
m o n e s e c r e t i o n a t m u l t i p l e l e v e l s . H e n c e ,
tetrahydrocorticosterone might indirectly affect the liver pro-
tection function of the sphinganine-1-phosphate through the
steroid hormone biosynthesis. By the prevented or treated
administration of EZW, the concentrations of sphinganine
and tetrahydrocorticosterone were recovered, and the liver of
rats could be protected again.

In lysine degradation, pipecolic acid is a metabolite of
lysine found in physiological fluids such as urine and plasma
[50]. It was found by Fujita [44] that both D-pipecolic acid and
L-pipecolic acid were moderately increased in patients with
liver cirrhosis and in patients with chronic hepatic encepha-
lopathy. Although L-pipecolic acid remained the predominant-
ly circulating form, D-pipecolic acid was proportionally higher
in liver disease patients than in healthy individuals. Patients
with liver cirrhosis have elevated levels of GABA and
pipecolic acid in plasma [51]. And plasma pipecolic acid is
closely correlated with plasma ammonia concentration. This

work also revealed that the degree of portal hypertension in
cirrhotic patients may be predicted by plasma pipecolic acid.
In our study, the concentration of pipecolic acid is increased in
the model group and the EZW help the pipecolic acid levels in
both plasma and urine to increase, indicating the recovery of
liver function.

Phosphoribosyl pyrophosphate is a pentose phosphate
from the pentose phosphate pathway. The pentose phosphate
pathway in animals fulfills two important cell requirements:
(1) for ribose 5-phosphate for the synthesis of nucleotides and
nucleic acids; and (2) for reducing power in the form of
NADPH. In photosynthesis, it functions to regenerate the
primary CO2 acceptor, ribulose bisphosphate, from the hexose
phosphates produced [52]. Chloroplasts utilize radiant energy
to produce ATP, required for the production of ribulose 1,5-
bisphosphate from ribulose 5-phosphate and also for the re-
duction of 3-phosphoglyceric acid to glyceraldehyde 3-phos-
phate. Some research results also appear to demonstrate that
phosphoribosyl pyrophosphate bioavailability in liver as a key
compound is most closely controlled by the energy charge
[53]. The concentration of phosphoribosyl pyrophosphate
increases in the model group, indicating some disorder in liver
and then it is decreasing in EZW-prevented and treated
groups.

Conclusion

A robust integrated metabolomics approach utilizing
HPLC/QTOF-MS was developed to investigate the influence
of Er-Zhi-Wan on the CCl4 liver-injured rats. Pattern
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recognition analysis allowed the metabolic profiles of control,
EZW-prevented, EZW-treated, and model groups to be sepa-
rated clearly, indicating a more comprehensive information
from integrated information. Six potential biomarkers were
identified from plasma and urine specimens. According to the
pathway library of R. norvegicus (rat), six metabolic pathways
were disturbed among groups, relating to tryptophan metabo-
lism, sphingolipid metabolism, steroid hormone biosynthesis,
lysine degradation, glycine, serine and threonine metabolism,
and pentose phosphate pathway. The combination of plasma
and urine metabolomics provides a powerful means of reveal-
ing changes in the metabolome due to liver injury and EZW
efficacy. The presented metabolomics strategy could be ex-
tended to other multiple-source metabolomics studies, e.g.,
different analytical platforms, different omics or different
specimens. Certainly, for quantitatively investigating effect
of EZW for liver injury, these biomarkers should be deter-
mined more accurately. The quantitative analysis of bio-
markers should be done in a further study to characterize the
effects of traditional Chinese medicine to prevent liver injury
and protect the liver.
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